Fertilization effects on fineroot biomass, rhizosphere microbes and respiratory fluxes in hardwood forest soils.

نویسندگان

  • Richard P Phillips
  • Timothy J Fahey
چکیده

Fertilizer-induced reductions in CO(2) flux from soil ((F)CO(2)) in forests have previously been attributed to decreased carbon allocation to roots, and decreased decomposition as a result of nitrogen suppression of fungal activity. Here, we present evidence that decreased microbial respiration in the rhizosphere may also contribute to (F)CO(2) reductions in fertilized forest soils. Fertilization reduced (F)CO(2) by 16-19% in 65-yr-old plantations of northern red oak (Quercus rubra) and sugar maple (Acer saccharum), and in a natural 85-yr-old yellow birch (Betula allegheniensis) stand. In oak plots, fertilization had no effects on fine root biomass but reduced mycorrhizal colonization by 18% and microbial respiration by 43%. In maple plots, fertilization reduced root biomass, mycorrhizal colonization and microbial respiration by 22, 16 and 46%, respectively. In birch plots, fertilization reduced microbial respiration by 36%, but had variable effects on root biomass and mycorrhizal colonization. In plots of all three species, fertilization effects on microbial respiration were greater in rhizosphere than in bulk soil, possibly as a result of decreased rhizosphere carbon flux from these species in fertile soils. Because rhizosphere processes may influence nutrient availability and carbon storage in forest ecosystems, future research is needed to better quantify rhizo-microbial contributions to (F)CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root-induced changes in nutrient cycling in forests depend on exudation rates

(1) While it is well-known that trees release carbon (C) to soils as root exudates, the factors that control the magnitude and biogeochemical impacts of this flux are poorly understood. (2) We quantified root exudation and microbially-mediated nutrient fluxes in the rhizosphere for four ~80 year-old tree species in a deciduous hardwood forest, Indiana, USA. We hypothesized that trees that exude...

متن کامل

Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA; Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an average of 45% in hardwood stan...

متن کامل

The Effect of Nitrogen Fertilization on the COS and CS2 Emissions from Temperature Forest Soils

The net fluxes of carbonyl sulfide (COS) and carbon disulfide (CS2) to the atmosphere from nitrogen amended and unamended deciduous and coniferous forest soils were measured during the spring of 1986. We found that emissions of these gases from acidic forest soils were substantially increased after nitrogen fertilization. The total (COS + CS 2) emissions were increased by nearly a factor of thr...

متن کامل

Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils.

The impact of environmental perturbation (e.g., nitrogenous fertilizers) on the dynamics of methane fluxes from soils and wetland systems is poorly understood. Results of fertilizer studies are often contradictory, even within similar ecosystems. In the present study the hypothesis of whether these contradictory results may be explained by the composition of the methane-consuming microbial comm...

متن کامل

Soil Properties in 35 y old Pine and Hardwood Plantations after Conversion from Mixed Pine-hardwood Forest

—Past management practices have changed much of the native mixed pinehardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately, soil functions. Restoring the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 176 3  شماره 

صفحات  -

تاریخ انتشار 2007